Variables and Patterns UNIT

Main Focus: Focus on Algebra

Variables and Patterns (Relationships): Develop an understanding of variables and how they are related.

- Explore problem situations that involve variables and relationships
- Identify the dependent and independent variable and describe how they are related in a situation
- Interpret the 'stories' told by patterns in tables and coordinate graphs of numeric \((x, y)\) data;
- Represent the pattern of change between two variables in words, data tables, graphs, and equations
- Investigate situations that change over time
- Examine increasing and decreasing patterns of change
- Compare linear and non-linear patterns of change by using tables or graphs
- Use tables, graphs and equations to find the value of a variable given the value of the associated variable
- Explore relationships to become familiar with graphing in all four quadrants
- Describe advantages and disadvantages of using words, tables, graphs and equations to represent patterns of change between two variables and make connections across those representations
- Write an equation to express the relationship between two variables in one and two operations: \(y = mx, y = b + x,\) and \(y = b + mx\)
- Calculate average speed and show how it is reflected in a table or graph and vice versa.
- Recognize and express direct proportionality relationships with a unit rate \((y = mx)\) and represent these relationships in rate tables and graphs
- Solve problems that involve variables

Expressions and Equations: Develop an understanding of expressions and equations.

- Use properties of operations, including the Distributive Property and the Order of Operations, to write equivalent expressions for the dependent variable in terms of the independent variable
- Use tables, graph or properties of numbers such as the Distributive Property to show that two expressions are equivalent
- Identify parts of an expression using mathematical terms (sum, term, product, factor, quotient, coefficient); view one or more parts of an expression as a single entity
- Interpret and evaluate expressions in which letters stand for numbers and apply the Order of Operations as needed
- Recognize that equations are statements of equivalence between two expressions
- Solve linear equations of the form, \(y = ax, y = b + x,\) and \(y = b + ax\) using numeric guess and check, tables of \((x, y)\) values, graphs or fact families
- Write an inequality and associate it with an equation to find solutions and graph the solutions on a number line
"I Can Translate a Written Mathematical Expression into a Symbolic Expression."
Writing Numerical and Algebraic Expressions and Equations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Key Words</th>
<th>Example</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition (+)</td>
<td>Plus</td>
<td>Seventeen plus thirty-seven</td>
<td>17 + 37</td>
</tr>
<tr>
<td></td>
<td>More than</td>
<td>Ten more than x</td>
<td>x + 10</td>
</tr>
<tr>
<td></td>
<td>Increased by</td>
<td>A number increased by twenty</td>
<td>x + 20</td>
</tr>
<tr>
<td></td>
<td>Added to</td>
<td>Eleven added to forty-five</td>
<td>11 + 45</td>
</tr>
<tr>
<td></td>
<td>SUM</td>
<td>The sum of 20 and j</td>
<td>20 + j</td>
</tr>
</tbody>
</table>

Subtraction (−)	Minus	A number minus seven	n − 7
	Decreased by	Four decreased by m	4 − m
	Fewer than	2 fewer than 10	10 − 2
	Less than	Five less than eight	8 − 5
	Subtracted from	Some number subtracted from ten	10 − n
	DIFFERENCE	The difference of 19 and 12	19 − 1

Multiplication (⋅)	Times	Five times a number	5 ⋅ n
	Twice/Double	Twice a number / Double a number	2 ⋅ x
	Triple	Triple a number	3 ⋅ a
	PRODUCT	The product of three and twelve	3 ⋅ 12

Division (÷)	Divided by	One hundred divided by 20	100 ÷ 20
	Divided into	Six divided into 30	30 ÷ 6
	Split Into Groups	24 split into 4 groups	24 ÷ 4
	Cut in half	A number cut in half	a ÷ 20
	QUOTIENT	The quotient of a number and 2	q ÷ 2

Power (²)	Square	x squared	x²
	Cube	6 cubed	6³
	Raised to the Power	t raised to the fifth power	t⁵
Translate the following algebraic expressions.

1. The sum of 15 and \(v \)
\[15 + v \]

2. The quotient of a number and 7
\[x \div 7 \]

3. A number to the eighth power
\[m^8 \]

4. 8 subtracted from a number
\[n - 8 \]

5. Six times a number increased by 9
\[6 \cdot q + 9 \]

6. The difference of 7 and 3 times a number
\[7 - 3 \cdot m \]

7. 17 less than a number cubed
\[a^3 - 17 \]

8. A number cut in half decreased by 5
\[\frac{c}{2} - 5 \]

9. The product of 4 and a number squared
\[4 \cdot h^2 \]

10. \(\frac{x^3}{2} - 8 \)

11. 5 times the quantity \(x + y \)
\[5(x + y) \]
Translate the following algebraic expressions. **Show work** for full credit.

1. The product of 7 and a number
 \[7 \cdot n \]

2. The difference of \(x \) and 5
 \[x - 5 \]

3. 14 increased by a number cubed
 \[14 + c^3 \]

4. A number split up into 5 groups
 \[a \div 5 \]

5. 6 less than the product of 10 and a number
 \[10 \cdot a - 6 \]

6. Seven times the quantity of \(a \) plus \(b \)
 \[7 \cdot (a + b) \]

7. A number squared divided by 15
 \[\frac{x^2}{15} \]

8. Fifteen subtracted from triple a number
 \[3x - 15 \]

9. The quotient of 4 and a number to the fifth power
 \[4 \div n^5 \]

10. \(2(a - b) \)

 Two times the quantity of \(a \) minus \(b \)

11. \(7 - 3x^2 \)

 Seven minus the product of Three and a number squared.
Fill in the table and write an expression to represent each situation.

12. Darren saved twice the amount of money Jesse did. If Jesse saved \(m \) dollars, how much did Darren save?

<table>
<thead>
<tr>
<th>Jesse</th>
<th>Darren</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5</td>
<td>$10</td>
</tr>
<tr>
<td>$12</td>
<td>$24</td>
</tr>
<tr>
<td>(m)</td>
<td>(m \cdot 2)</td>
</tr>
</tbody>
</table>

Expression: \(m \cdot 2 \)

13. George read a third of the pages Bill read for his summer reading project. If Bill read \(p \) pages, how many pages did George read?

<table>
<thead>
<tr>
<th>Bill</th>
<th>George</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>(p)</td>
<td>(p \div 3)</td>
</tr>
</tbody>
</table>

Expression: \(p \div 3 \)

14. The width of a box is 4 inches less than the length. If the width of the box is \(x \) inches, how long is the length?

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>(x + 4)</td>
<td>(x)</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
</tr>
</tbody>
</table>

Expression: \(x + 4 \)

15. Simon spent \$12 per ticket for him and his friends to go to a concert. If Simon bought \(t \) tickets, how much money would Simon spend?

<table>
<thead>
<tr>
<th>Tickets</th>
<th>Money Spent</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (\times) 12</td>
<td>$36</td>
</tr>
<tr>
<td>7 (\times) 12</td>
<td>$84</td>
</tr>
<tr>
<td>(t) (\times) 12</td>
<td>(t \times 12)</td>
</tr>
<tr>
<td>2</td>
<td>$144</td>
</tr>
</tbody>
</table>

Expression: \(t \times 12 \)
Simplifying Algebraic Expressions

1) \(-3 + \frac{10}{b} \quad \text{use } b = 5\)
 \[-1\]
 \[\text{use } d = 32\]
 \[-\frac{d}{8} + 5\]
 \[1\]

2) \(-5 + \frac{w}{5} \quad \text{use } w = 10\)
 \[-3\]
 \[\text{use } n = 4\]
 \[3n + n\]
 \[16\]

3) \(6h - 9h \quad \text{use } h = 5\)
 \[-15\]
 \[\text{use } z = 6\]
 \[-8(9z - 6)\]
 \[-384\]

4) \(h + 5h \quad \text{use } h = 9\)
 \[54\]
 \[\text{use } b = 5\]
 \[-3(7 + 6b)\]
 \[-111\]

5) \(4(7 - 9d) \quad \text{use } d = 4\)
 \[\text{use } x = 7\]
 \[5x - 4x + 6\]
 \[13\]
Simplifying Algebraic Expressions

1) \(-7(-9r + 5h)\) use \(r = 9\) and \(h = 8\)
 \[287\]

6) \(9(-6c - 4b)\) use \(c = 6\) and \(b = 3\)
 \[-432\]

2) \(8w - 4 + 6x\) use \(w = 9\) and \(x = 4\)
 \[92\]

7) \(\frac{-16}{s} - 5 + 7c\) use \(s = 4\) and \(c = 7\)
 \[40\]

3) \(2 - \frac{18}{z} + 4n\) use \(z = 6\) and \(n = 4\)
 \[15\]

8) \(-8 - \frac{s}{9} + 6c\) use \(s = 27\) and \(c = 4\)
 \[13\]

4) \(4(-7c + 2d)\) use \(d = 4\) and \(c = 3\)
 \[-52\]

9) \(7 - 3s + 9k\) use \(s = 8\) and \(k = 7\)
 \[46\]

5) \(2c + 8x + 4\) use \(c = 8\) and \(x = 6\)
 \[68\]

10) \(4d - 6c - 7\) use \(d = 9\) and \(c = 5\)
 \[-1\]

Math-Aids.Com
Ordered Pairs

Tell what point is located at each ordered pair.
1. \((3, -2)\) B
2. \((2, 3)\) D
3. \((-5, 5)\) O
4. \((-7, -8)\) H
5. \((-4, 4)\) C
6. \((-5, 0)\) F

Write the ordered pair for each given point.
7. \(E (-3, -2)\)
8. \(M (1, -6)\)
9. \(P (8, 0)\)
10. \(G (7, 8)\)
11. \(Q (-8, 0)\)
12. \(N (5, 5)\)

Plot the following points on the coordinate grid.
13. \(S (-6, -3)\)
14. \(T (2, -4)\)
15. \(U (5, 0)\)
Plot the Points in the Grid

Plot the following points in the given grid:

A (1, 2) B (-1, 5) C (2, -3) D (-4, -6)
E (0, 4) F (6, 0) G (0, 0) H (0, -7)
Identify the Quadrants

Plot the following points and identify the quadrant in which they lie:

A (2, -6) \text{ Quadrant IV} \quad B (-7, -3) \text{ Quadrant III} \quad C (-5, 5) \text{ Quadrant II}

D (-4, -1) \text{ Quadrant III} \quad E (1, -1) \text{ Quadrant IV} \quad G (6, 4) \text{ Quadrant I}